Quartile deviation - ترجمة إلى العربية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

Quartile deviation - ترجمة إلى العربية

MEASURE OF STATISTICAL DISPERSION
IQR; Inter-quartile range; Interquartile Range; Interquartile ranges; Quartile deviation; Middle 50%; Semi-interquartile range
  • [[Box-and-whisker plot]] with four mild outliers and one extreme outlier. In this chart, outliers are defined as mild above Q3 + 1.5 IQR and extreme above Q3 + 3 IQR.

Quartile deviation         
انحراف رُبْعِي
QUARTILE         
THE THREE POINTS THAT DIVIDE THE DATA SET INTO FOUR EQUAL GROUPS IN DESCRIPTIVE STATISTICS
First quartile; Quartiles; Quartil; Q2 (statistics); Upper quartile; Lower quartile; Second quartile; Third quartile

ألاسم

أرباع; الربع الواحد

quartile         
THE THREE POINTS THAT DIVIDE THE DATA SET INTO FOUR EQUAL GROUPS IN DESCRIPTIVE STATISTICS
First quartile; Quartiles; Quartil; Q2 (statistics); Upper quartile; Lower quartile; Second quartile; Third quartile
شَرِيحَةٌ رُبْعِيَّة

تعريف

Quartile

ويكيبيديا

Interquartile range

In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread. It is defined as the difference between the 75th and 25th percentiles of the data. To calculate the IQR, the data set is divided into quartiles, or four rank-ordered even parts via linear interpolation. These quartiles are denoted by Q1 (also called the lower quartile), Q2 (the median), and Q3 (also called the upper quartile). The lower quartile corresponds with the 25th percentile and the upper quartile corresponds with the 75th percentile, so IQR = Q3 −  Q1.

The IQR is an example of a trimmed estimator, defined as the 25% trimmed range, which enhances the accuracy of dataset statistics by dropping lower contribution, outlying points. It is also used as a robust measure of scale It can be clearly visualized by the box on a box plot.